

S. PLUTA and E. ŻURAWICZ Research Institute of Pomology and Floriculture SKIERNIEWICE, Poland E-mail: spluta@insad.pl

Antioxidant capacity [umol TEAC/gram]			
blueberry	20 - 45		
raspberry	13 - 22		
strawberry	9 - 18		
plum	9.5		
orange	7.5		
grape	7.4 - 18		
apple	2.2		
red wine	10 - 18		
white wine	2 – 5		

Dessert type blackcurrants for fresh Market

- Enhance the fresh fruit market
- Enrich the human diet with healthy fresh fruit
- Allow the grower to introduce innovative
- blackcurrant production technology
 Increase profitability of blackcurrant productivity
- <u>Cultural practices</u> e.g. open field and protected cultivation on wires etc.

• Desired fruit traits:

- ✓ Large berries preferred (1,5 g or more) on long strigs,
 ✓ Green strigs preferred
 ✓ High fruit quality (ascorbic acid, anthocyanins, others)
- ✓ Uniform fruit ripening
- ✓ Easy hand picked on strig

JUSTIFICATION OF STUDIES

- As a good example of blackcurrant cultivars fulfilling the requirements of dessert fruits can be listed:Scottish cv. 'Ben Sarek' and Polish 'Bona' as well as few Ukrainian cultivars such as 'Czereszniewa', 'Sjuta Kijewskaja' and Sanjuta
- At RIPF in Skierniewice, Poland the breeding program oriented at receiving of high dessert fruit quality for fresh consumption it has been carried out for several years

BREEDING RESEARCH OBJECTIVES

Provide information on breeding value based on General Combing Ability (*GCA*) effects of six genotypes which could be used in the efficient breeding program aimed at developing **dessert type of blackcurrant cultivars.**

Seedlings resulting from 6 x 6 half-diallel complete design Griffing's method 4, (15 F_1 full-sib families — 720 seedlings)						
<u>\$</u>	BONA	BEN SAREK	LENTAJ	STORKLAS	SCRI C2/15/40	CZERESZNIE WA
BONA		x	x	x	X	X
BEN SAREK			x	x	x	x
LENTAJ				x	х	x
SCRI C2/15/40					x	x
						x

GENOTYPES CROSSED: (Six cultivars were crossed)

1. BONA (PL)

2. BEN SAREK (U.K.)

3. LENTAJ (RUS)

Production of seedlings in the glasshouse (January 15 - May 30, 1997)

<section-header> **INCESTIGATEDITATIS 2000** · 2003 Fuit yield [kg/plant] Fuit size [weight of 100 berries in g] Field resistance to American powdery mildew (sphareotheca mors-uvae) [ranking scale 1-5] Field resistance to leaf spot (Drapenopezizia ribis) [ranking scale 1-5] Field resistance to white pine blister rust (cronatrium ribicola) [ranking scale 1-5] Marking scale 1-5; 1 - no symptoms, 5 - very severe symptoms Taste and aroma (only on the selected clones with good poductive value) - evaluated by 5 persons

Analysis of variance of combining ability of selected traits in blackcurrant diallel-cross design (averaged 2000-2003)

0			Mean squares (S ²)				
Source	df	Fruit	Fruit	Field resistance to fungal diseases			
variation	yield	size	Powdery mildew	Leaf spot	WPBR		
GCA	5	0,368**	449,9**	0,058**	0,320**	0, 676**	
SCA	9	0,298**	181,6**	0,076**	0,128**	0,576**	
Error	42	0,080	42,8	0,006	0,024	0,005	
$\frac{S \frac{2}{GCA}}{S \frac{2}{SCA}}$		0,55	0,71	0,43	0,71	0,54	
** - significant at the level α =0,05							

Estimates of GCA effects of six blackcurrant cultivars for selected traits (*averaged 2000-2003*)

Cultivar	Fruit yield	Fruit size	Field resistance to fungal diseases		
			Powdery mildew	Leaf spot	WPBR
Bona	-0,24*	-4,92*	0,05*	0,06	-0,17*
Ben Sarek	-0,06	-6,68*	0,03	0,18*	0,18*
Lentaj	0,02	2,70	0,02	-0,22*	-0,22*
Storklas	0,23*	3,45*	-0,12*	-0,10*	-0,10*
SCRI C2/15/40	0,01	7,74*	-0,01	0,03	0,03
Czereszniewa	0,05	-2,30	0,02	0,06	0,06
SE(ĝ _i) x 2,77	0, 17	5,01	0,06	0,11	0,06
SE(ĝ _{i-} g _i) x 3,11	0,31	8,74	0,09	0,16	0,09
General mean	0,75	97,4	1,32	3,39	2,28

DESSERT TYPE CULTIVARS

- As a good example of blackcurrant cultivars fulfilling the requirements of dessert fruits can be listed:Scottish cv. 'Big Ben' and Polish 'Bona', 'Tisel', 'Tines' as well as Ukrainian cvs. 'Czereszniewa', 'Sofijewskaja' and Lithuanian cvs. 'Blizgiai', 'Gagatiai', 'Vyciai',
- At RIPF in Skierniewice, Poland the breeding program oriented at receiving of **high dessert fruit quality** for fresh consumption has been carried out since 1997.

NEW CROSSI	NG PROC	GRAM - 2008
(factorial	crossing	design)

PARENTAL FORMS	1. CERES	2. FOXENDOWN	3. SANJUTA
1. BONA (PL)	X	X	X
2. BIG BEN (UK)	X	X	X
3. CZERESZNIEWA (UA)	X	X	X
4. KUPLINIAI (LT)	X	X	X
5. GOFERT (PL)	X	X	X
6. DLINNOKISTNAJA (RUS)	X	X	X
7. LENTAJ (LT)	X	X	X
8. TINES (PL)	X	X	X
9. TISEL (PL)	X	X	X
10. SOFIJEWSKAJA (UA)	X	X	X
11. PC-425 (PL)	X	X	X
12. D 13B/11 (PL)	X	X	X
13. ORES (PL)	X	X	X
14. RUBEN (PL)	X	X	X
15. TITANIA (S)	Х	X	X

DESSERT TYPE CULTIVARS

'BIG BEN' SCRI C2/15/40

CZERESZNIEWA

