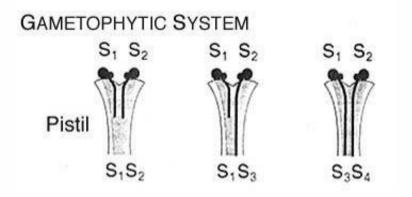
Molecular marker application in breeding of self- and cross- compatible sweet cherry (*P. avium* L.) varieties

Gunārs Lācis, Silvija Ruisa, Irita Kota

Introduction

- Sweet cherry (*Prunus avium* L.) collection at the Latvia State Institute of Fruit-Growing (135 accessions):
 - advanced cultivars,
 - semi-wild samples,
 - landraces,
 - diverse germplasm from the northern temperate zone.

Introduction


Need for self- compatibility information:

- All commercial cultivars of sweet cherries grown in Latvia are known to be self-incompatible Commercial sweet cherry orchards needs suitable pollinators to cultivars ensure fertilization and subsequent fruit development
- Developing of self-fertile cultivars:
 - Winterhardy enough at our country
 - Breeding programme crossing cultivars – *Sf* gene donors with winterhardy local or introduced cultivars.

S (self-incompatibility) gene

Gametophytic incompatibility system

- mono-factorial, multiallelic
 (16 alleles (Tobutt et al 2004))
- governed by a single *S* locus
- if a pollen S-allele matches the S-alleles of the pistil, the growth of the pollen tube is arrested in the style inhibiting fertilization.

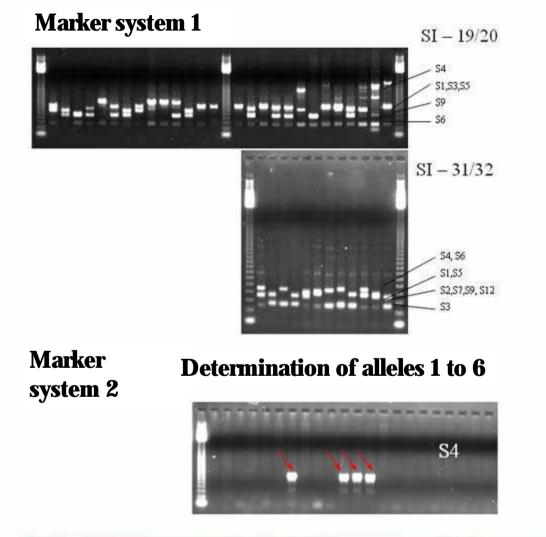
Molecular markers vs. traditional approaches

Traditional approaches

 Crossing experiments with following cytoembryological assessments of the pollen tube growth within the style

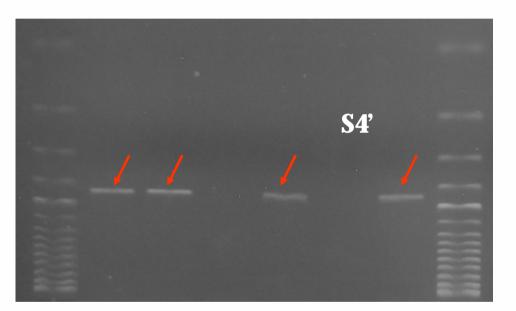
Drawbacks:

- necessity of flowering plants
- time consuming
- depending on weather during blooming


Molecular markers

- Allele specific markers:
 - Detection during juvenile period
 - Independence from weather conditions

S (self-incompatibility) gene marker


Degenerate PCR primer pairs developed by Wiersma et al. (2001)

S-RNase allele specific PCR primer pairs developed for each allele (S1 to S6) by Sonneveld et al. (2001)

S (self-compatibility) gene marker

Marker system 3

Determination of allele S4' (self- compatibility) S-RNase allele specific PCR primer pairs developed for allele (S4') by Zhu *et al* 2004

Applications

Screening of genetic resources collection:
 Detection of compatibility groups
 Detection of self- compatibility donors

- Introduction of markers in breeding:
 - Testing and selection of potential parents
 - Testing of hybrids

Results:

□ 56 varieties screened

(Lacis et al 2008)

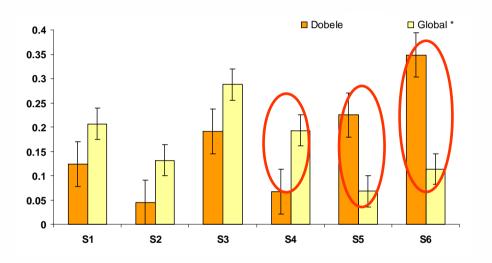
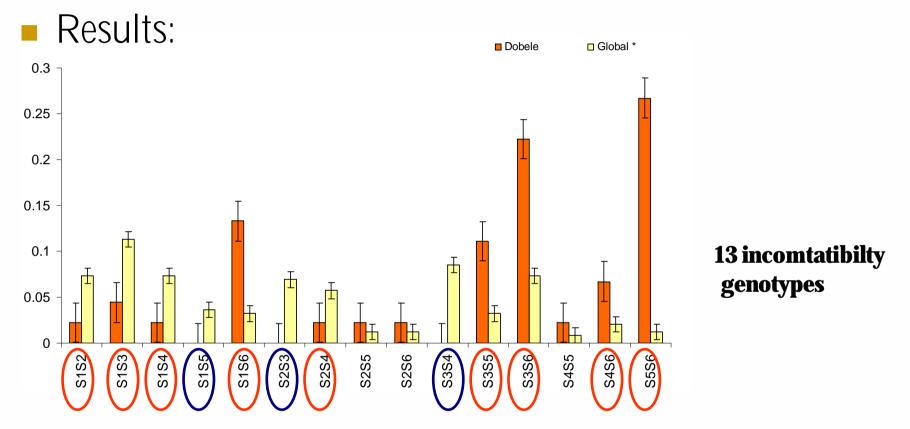

Euphytica

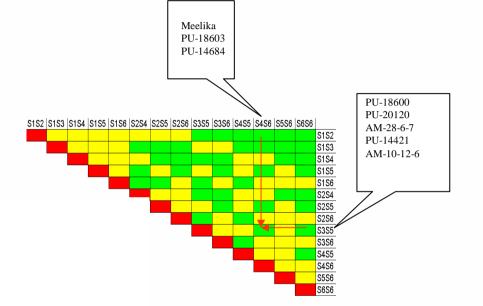
Table 1 S-alleles identified in accessions of the Dobele HPBES sweet cherry collection

No	Accession name	Origin ^a	S-allele	Incompatibility group ^b
1	Agris	LC	$S_I S_2$	Ι
2	AM-10-12-6	LC	S_3S_5	v
3	AM-10-6-12	LC	S_1S_3	п
4	AM-24-10-22	LC	S_IS_4	IX
5	AM-28-6-7	LC	$S_{3}S_{5}$	v
6	Balzams	LC	S_2S_5	VIII
7	Brjanskaja Rozovaja	RC	S_3S_6	VI
8	Drogan's Gelbe	EO	S_1S_5	XIV
9	Elfrīda	LC	S_5S_6	XV
10	Kati	EC	S_4S_5	VII
11	Meelika	EC	S4S6°	XVII
12	PU-13629	PU	S_1S_6	XX
13	PU-13802	PU	S_2S_6	XXV
14	PU-14419	PU	S5S6°	XV
15	PU-14421	PU	$S_{3}S_{5}$	v
			-	

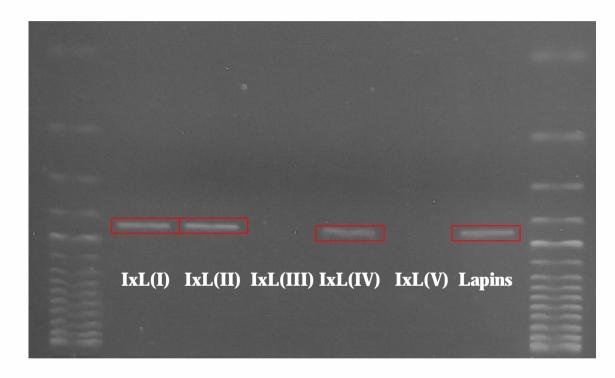

Results:

6 incompatibility alleles

* Allele frequencies calculated from S-allele identification data published by Tobutt et al. (2004) The *S*-allele frequencies published for over 250 sweet cherry cultivars from Western and Southern Europe.



* Allele frequencies calculated from S-allele identification data published by Tobutt et al. (2004) The *S*-allele frequencies published for over 250 sweet cherry cultivars from Western and Southern Europe.


• Further applications:

- □ as accession descriptor
- planning of crosses
- for conservation of alleles
- population genetics studies
- □ practical fruit growing

Introduction of markers in breeding

Parents: 'Lapins' (self-fertile) 'Iputj' (winterhardy)

Progeny: IxL (I) (S4')

IxL (II) (S4') IxL (III) IxL (IV) (S4') IxL (V)

Thank you for your attention!

