

First results of the development of Intelligent Non-invasive Phenotyping of Raspberries using **Machine Learning and 3D Imaging** CULTURE

Introduction

- The efficiency of breeding for raspberry traits must rely on intelligent, non-invasive phenotyping methods using AI.
- The use of non-invasive imaging techniques and data analysis during the evaluation process will increases the quality and yield of raspberries.
- **approach will** enable more accurate, faster and more productive evaluation of raspberries.

Objectives

To develop of a non-invasive ML-based raspberry phenotyping model using RGB and 3D imaging to process yield components and understanding environmental interactions.

Materials and Methods

- collection.
- **RBG** image acquisition using the iPhone XS cell phone.
- **3D image acquisition** using Zivid One + 3D camera.
- process yield components.

Results 1. RBG Raspberry dataset and detection

- Raspberry RBG image acquisition.
- Manual annotating of raspberries using Labelmg 1.8.6 software.
- Original RasperrySet dataset 2039 images (1773x1773 px) consisting of five classes: `bud`, `flower`, `unripe berry`, `ripe burry`, `damaged buds`.
- Raspberry (object) detector with trained DNN YOLOv5 architecture.

Statistics of floricane raspberry fruits, 2021

Cultivore	Fruit laterals per	Berries per fruit	Average weight of	Yield, g per cane
Cultivars	cane, count	lateral, count	berry, g	
S2-6-13	21.5	11.7	2	503.1
S2-6-8	18.2	14.4	1.8	471.7
S11-25a-4	15.1	12.4	2.5	468.1
Patricija	15.6	8.7	2.3	312.2
Lubetovskaja	13.2	10.1	2.1	280.0
Līna	11.7	8.5	2.7	268.5
S1-12-13	15.4	9.1	1.8	252.3
Ruvi	18.3	9.8	1.4	251.1
Kapriz Bogov	13.9	7.8	2.1	227.7
Bozhestvennaja	10.5	7.2	2.7	204.1
Sulamifa	18.6	7.8	1.3	188.6
Octavia	8.7	8.8	2.2	168.4
Shahrizada	9.7	6	2.3	133.9
Glen Ample	6.9	7.3	2.2	110.8
p values between genotypes =5.7E ⁻²⁹				

Acknowledgements : : This research was supported by the Latvian Council of Science project Nr.LZP_2020/1-0353 "Smart non-invasive phenotyping of raspberries and Japanese quince using machine learning, hyperspectral and 3D imaging".

S. Strautiņa, I.Kalniņa¹, E.Kaufmane¹, K.Sudars², I.Namatēvs², J. Judvaitis², R.Balašs², A. Ņikuļins² ¹Institute of Horticulture, Dobele, Latvia ²Institute of Electronics and Computer Science, Riga, Latvia

• The development of a model for raspberry phenotyping based on RBG and 3D imaging and the ML

Location: orchard of LatHort in Dobele, the southern part of Latvia (GPS: 56.6323154; 23.3425648). Phenotypic characterization was performed on a representative part (Rubus genotypes) of LatHort

Development of a non-invasive ML-based raspberry phenotyping model using RGB and 3D imaging to

Detection results obtained with the trained YOLOv5 detector on random images from the test set of the RaspberrySet dataset.

• The DNN YOLOv5 model has been developed for the detection and localization of raspberries in RGB images. • The model has been trained for raspberry yield estimation and achieves an average accuracy (mAP) > 70%. • The 3D model can distinguish raspberries based on their height, width and depth in a 3D point cloud. The phonological parameter - Raspberry Grooved Index has been created.

Results 2. Parametric characterization of raspberry using 3D imaging

- Development of 3D point cloud detection algorithms KNN (k nearest neighbours), "imaginary square" and object projection.
- The algorithms detect and localize raspberries as a 3D object. • 3D raspberry dataset
- The tool for locating raspberries with 3D bounding boxes on 3D images. • The Raspberry Grooved Index.
- The software for 3D raspberry detection and localization with 3D bounding boxes.

Conclusions and perspectives

Future research will focus on extraction and evaluation of multiparameters for phenotyping from 3D raspberry images.

Analysis of raspberry texture and statistical analysis (SPSS) for non-invasive categorization of phenotypes. Development of a **3D image-based methodology for phenotyping**. Integration of the developed methods into a ML-based system prototype and its validation. **Demonstration of a non-invasive phenotyping prototype** for raspberry yield estimation and raspberry trait breeding.

Contact: : sarmite.strautina@llu.lv

Raspberry localization with 3D bounding boxes