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Abstract 
To distinguish candidate cultivars in fruit breeding, the characteristics of several 

thousand seedlings must be described and evaluated, which is done visually. Fruit 
counting and measuring in the field is currently the most used method. However, it is 
tedious and time-consuming and requires abundant manpower. In addition, visual 
evaluation is relatively subjective, and results may vary from different evaluators. The 
solution is to develop a machine vision-based method to automate and to intensify the 
fruit breeding process. In Latvia, the fruit breeding programme focuses on four fruit 
crops, including raspberries. Inclusion of raspberries (Rubus idaeus) in the breeding 
programme is related to the fact that there are no cultivars suitable for Latvian 
agroclimatic conditions. Breeding experience shows that the selections have 
insufficient ecological phenotype plasticity, which is a risk for cultivation of these 
cultivars in Latvian climate. In raspberries, yield depends on the sum of yield 
components, and each component is evaluated separately. The most important yield 
components are: number of laterals per shoot, number of flowers/fruits per lateral 
shoot, and average fruit mass. With the evaluation of these traits, image-based 
approaches to raspberry phenotyping are gaining momentum and provide fertile 
ground for non-invasive raspberry detection and categorization. The objective of this 
research is to develop a methodology and tools for non-invasive phenotyping of 
raspberry yield components based on red, green, blue (RGB) image colour value and 
3D images, as well as provide descriptive and inferential statistics of raspberry 
cultivars. We propose a manually annotated 2D raspberry data set with ground truth 
region of interest (ROI)classifying labelled into five classes: “Buds”, “Flowers”, “Unripe 
Berries”, “Ripe Berries”, and “Damaged Berries” to verify and evaluate the raspberry 
detection problem using real-time deep neural network Yolo5. We also present three 
algorithms for 3D computational image processing to create 3D bounding boxes for 
raspberry parametrizing. 

Keywords: raspberry, germplasm, multivariate statistics, phenotypic characterization, 
machine learning, RGB and 3D imaging 

INTRODUCTION 
The experience of raspberry growing in Latvia shows that the biggest part of most 

popular cultivars do not have a sufficiently high ecological phenotype plasticity, which poses 
a risk for the cultivation of these cultivars in the Latvian climate. The Institute of Horticulture 
(LatHort) in Dobele, Latvia has more than 40 years of experience in breeding raspberries, 
including description and visual evaluation of their phenotypic traits. The yield of raspberries 
depends on the sum of yield components, each of which is evaluated individually. The most 
important components are: number of laterals per cane, number of flowers/fruits per lateral 
shoot, and average fruit mass. The latter depends on the number and mass of individual 
drupes they form. The quality of raspberries is determined not only by flavour, which can be 
assessed by sensory evaluation, but also by the fruit’s resistance to bruising, its colour, 
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glossiness or bloom, and the firmness of the drupes. Initially, all the parameters for 
raspberries are estimated visually on a rating scale of 1-9, where 1 is the lowest and 9 the 
highest. To focus the evaluation process on the quality characteristics and yield components 
of raspberries and to reduce the influence of the human factor, appropriate imaging and data 
analysis methods should be introduced. Similar studies exist with imaging techniques for 
citrus (López-Garcıá et al., 2010). After all these traits have been evaluated, the next task is to 
integrate the entire raspberry breeding process into a ML-based (machine learning-based), 
non-invasive phenotyping model that would allow more productive, accurate, and faster 
evaluation of raspberries. 

Plant phenotyping has been an important area of research in plant breeding. Although 
molecular breeding strategies have increased the emphasis on selection based on genotypic 
information, the following phenotyping data are still needed, since: 1) phenotypes are used 
for selection and to shape a prediction model in genomic selection; 2) a single phenotyping 
cycle is used to identify markers for subsequent selection through generations within the 
marker-assisted recurrent selection; 3) phenotyping is necessary to identify promising events 
in transgenic studies (Jannink et al., 2010). Advances in phenotyping are essential to take 
advantage of developments in conventional, molecular, and transgenic breeding. To achieve 
this goal, phenotyping involves experts from biological sciences, computer science, 
mathematics, and engineering. Given the rapid development of plant genomic technologies, 
the lack of access to plant phenotyping capabilities limits the ability to dissect the genetics of 
quantitative traits that are influenced by the environment. Qualitative data are mainly used to 
diagnose highly heritable traits that are not affected by environmental variation. These traits 
are easy to evaluate, allow rapid discrimination between germplasm, and are generally 
regulated by a few major genes. Accurate quantitative phenotype data are essential in plant 
breeding programmes to evaluate genotype performance and make selection (He et al., 2017). 
Recent advances in ML and deep learning (DL) make these techniques specifically applicable 
to the development of a high-precision, high-accuracy phenotyping platforms. Visible and 3D 
imaging techniques can capture not only two-dimensional visible features but also the three-
dimensional shape and texture of the fruit. These techniques are non-invasive and can be used 
while the fruit is still attached to the plant. They also have the potential to detect normally 
invisible conditions such as water content, frost damage, etc. These data collected from plants 
of interest can be enriched with environmental data from sensors such as air and soil 
temperature and moisture, light conditions, etc., and the data sets are prepared for training a 
deep neural network (DNN) model for phenotyping. 

The objective of this research was to develop a non-invasive ML based approach and 
tools for phenotyping the yield components of raspberries using RGB and 3D hyperspectral 
cameras. This will benefit raspberry breeding not only in Latvia, but also in other countries 
where fruit breeding programs are being developed. 

MATERIAL AND METHODS 

Plant material 
The raspberry images were taken in an orchard of LatHort in Dobele, located in the 

southern part of Latvia (GPS: 56.6323154; 23.3425648). Phenotypic characterization was 
performed on a representative part (Rubus genotypes) of the LatHort collection. The cultivar 
evaluation plot was established in autumn 2018 with one-year-old plants, with spacing of 0.5 
m in the row and 3.5 m between rows. The cultivars and selections were grown in a 
randomized complete block design with 1-4 replications of 10 plants each, with drip irrigation, 
in 3×0.5 m plots. The plants were grown with five fruiting cane per plant. Each spring 300 kg 
ha-1 of complex fertilizer YaraMila CROPCARE NPK 11-11-21 (Yara) was applied along the 
rows. The mineral content of the soil in the plantation in year 2018 was the following: P-99 
mg kg-1, K-136 mg kg-1, C org-2.0%; the acidity of the soil was 7.3 pHKCl. Plants were grown 
following sustainable fruit growing practices (Directive 2009/128/EC). 
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Characterization and evaluation of raspberry fruit genotypes and elements 
Fourteen floricane raspberry genotypes were evaluated for their yield components 

(number of flowers and fruit laterals per cane, number of fruits per fruit lateral) on 10 plants 
per genotype. Fruit parameters (fruit length, fruit width, fruit shape, number of drupes) were 
evaluated by measuring and/or counting. Shape index (relation between the fruit length and 
fruit width) was used for the characterization of fruit shape. The mean fruit weight (g) and 
yield cane-1 (g) were determined by weighing. 

Fruit elements: number of flower buds, number of unripe and ripe berries were 
recorded with an RGB camera, but such fruit parameters as size and texture were determined 
from the 3D image data using Zivid One + 3D camera. All algorithms were developed in 
Python’s data processing environment. 

Statistical analysis 
ANOVA was applied to evaluate the variability of traits: count fruit laterals per cane, 

berries per fruit lateral. 

Characterization of raspberry fruits using 3D image data 
Another focus of raspberry fruit characterization was the use of a 3D fruit phenotyping 

approach. To achieve this, the idea of object detection algorithm in 3D point clouds was 
developed. The main task was to detect and identify raspberries as an object. In this project, 
we used 3D bounding boxes for the result. The evaluation was done using three algorithms: 
k-nearest neighbours (KNN) algorithm (Cover and Hart, 1967), “imaginary square” algorithm 
and object recognition by using object projection approach (Guo et al., 2013). The 3D point 
clouds were created using the Zivid One + 3D camera. 

KNN algorithm 
KNN was used to detect colours. First, the KNN algorithm must be trained – one or more 

colour samples of the object must be presented as training data. Then the presented colours 
are classified in a 3D graph. At least one object class is created. Based on the training colours, 
the KNN algorithm tries to find the same or similar colours in the test point cloud. The 
simplest case is when the object has a monotone colour. If the object has many different 
colours describing this object, then all descriptive colours must be assigned to the object class. 
The main task of the KNN algorithm in this project was to remove the background and 
unwanted noise. As a result, only the object, in this case the raspberries, remains (Figure 1). 

 

Figure 1. Object detection with KNN algorithm, (a) before using KNN, (b) after KNN. 

“Imaginary square” algorithm 
In general, there can be more than one object pattern in a point cloud. All patterns must 

be detected separately. The “imaginary square” algorithm is developed to separate one object 
pattern from other patterns. The “imaginary square” algorithm is used after the KNN 
algorithm. The analyses of the “imaginary square” algorithm start at the maximum ‘y’ value 
(at the edge of the point cloud). The square is created at the maximum ‘y’ point. As the square 
gets larger and larger, more and more points are needed. After each step, the square gets 
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larger and the number of points that are in that square also gets larger. If the number of points 
in the square in step ‘n+1’ is greater than in step ‘n’, then the square will continue to grow. 
Conversely, if the number of points in step ‘n+1’ remains the same, it means that a possible 
object has been detected. The next step is to analyse whether it is an object or not. 

If the two objects are located close, to each other than square treats two objects as one. 
In this case, it makes sense to define the largest possible object. If the size of the square is 
larger than the largest possible object, there is no point in increasing the size of the square 
further. When the maximum size of the square is reached, there might be one or more object 
patterns in the square. In this case, this area can be analysed separately with another 
algorithm (Figure 2). 

 

Figure 2. “Imaginary square” algorithm. 

Object projection analysing 
The third algorithm is the most precise algorithm, but it takes more time to detect an 

object than the “imaginary square” algorithm. The third algorithm uses the object projection 
on the base to analyse the possible object. To obtain the base projection of the object, the KNN 
algorithm is used a second time, but this time in reverse order. This time the objects are 
deleted, and the background is used. Using the background, it is possible to obtain outlier 
points of the base. The 3D camera that captures the patterns of the raspberries cannot capture 
what is behind them. When the berries are deleted from the point cloud, there is empty space 
under the berries – holes in the base. In this case the holes can be interpreted as projections 
of the object onto the base. Outlier points are the outlines of the object projection (Figure 3). 

 

Figure 3. Object projection analysing: (a) base, (b) the outlier points of the base. 

The analysis of the projection starts with the region in the square of the algorithm 
“imaginary square”. If there are two objects in this square, there are also two object 
projections. This algorithm analyses them one after the other. The point with the highest ‘y’ 
value is determined and defined as a point on the projection edge (perimeter). Then a point 
with a small delay is created inside the projection. This point is called analysis point (Figure 
4a). 
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Figure 4. (a) object projection analysing method, (b) 3D bounding boxes. 

From the analysis point, four vectors are created to locate the four nearest edge points 
of the object projection. Using these four points, some information about the object projection 
can be obtained. To get more precise information about the projection perimeter, you can 
move the analysis point a little and use four vectors again. When the object projection is 
located, the object is located above the projection and the 3D bounding boxes for each 
raspberry has been created (Figure 4b). 

RESULTS AND DISCUSSION 

Descriptive yield components 
The study in 2021 was carried out for 14 floricane raspberry cultivars and hybrids. The 

largest number of fruit laterals per cane was found for hybrid S 2-6-13 and the cultivars ‘Ruvi’ 
and ‘Sulamifa’. The largest number of fruits per fruit lateral was for the cultivar ‘Lubetovskaja’ 
and hybrids S2-6-8, S11-25a-4 and S2-6-13 (Table 1) compared to cultivar ‘Glen Ample’. 
Significant differences between evaluated genotypes (p<0.001) were found related to fruit 
laterals per cane, berries per fruit lateral and yield per cane. The diversity of genotypes with 
regard to yield components is important for the development of smart non-invasive methods 
for phenotyping these traits. 

Table 1. Characterization of yield and yield components in year 2021. 

Cultivars 
Fruit laterals 

per cane 
(count) 

Berries per 
fruit lateral  

(count) 

Average 
berry weight 

(g) 
Yield 

(g cane-1) 

S2-6-13 21.5 11.7 2.0 503.1 
S2-6-8 18.2 14.4 1.8 471.7 
S11-25a-4 15.1 12.4 2.5 468.1 
Patricija 15.6 8.7 2.3 312.2 
Lubetovskaja 13.2 10.1 2.1 280.0 
Līna 11.7 8.5 2.7 268.5 
S1-12-13 15.4 9.1 1.8 252.3 
Ruvi 18.3 9.8 1.4 251.1 
Kapriz Bogov 13.9 7.8 2.1 227.7 
Bozhestvennaja 10.5 7.2 2.7 204.1 
Sulamifa 18.6 7.8 1.3 188.6 
Octavia 8.7 8.8 2.2 168.4 
Shahrizada 9.7 6.0 2.3 133.9 
Glen Ample 6.9 7.3 2.2 110.8 
Probability levels of significance by ANOVA <0.001 <0.001 n.s. <0.001 



106 

Characterization of raspberry fruit parameters 
The largest fruits with elongated form and highest account of drupelets were for 

cultivars ‘Bozhestvennaja’ and ‘Patricija’ (Table 2). These cultivars have the highest shape 
index. The diversity of fruit parameters of different genotypes is important for the 
development of smart non-invasive methods for phenotyping using 3D images. 

Table 2. Characterisation of floricane raspberry fruits in year 2021. 

Cultivars Length 
(mm) 

SD 
(mm) 

Width 
(mm) 

SD 
(mm) 

Shape 
index SD Number of 

druplets SD 

S2-6-13 17.0 1.7 15.1 1.3 1.1 0.1 94.8 24.6 
S2-6-8 19.0 1.7 18.2 1.4 1.0 0.1 75.5 11.3 
S11-25a-4 17.3 1.3 16.6 1.1 1.0 0.1 80.1 8.2 
Patricija 25.7 4.2 18.1 1.1 1.4 0.2 112.3 22.5 
Lubetovskaja 17.4 1.1 15.4 1.6 1.1 0.1 71.0 9.2 
Bozhestvennaja 23.1 2.0 15.6 1.5 1.5 0.2 106.2 18.5 
Glen Ample 17.7 1.4 18.2 1.5 1.0 0.1 64.5 6.6 
Meteor 14.9 1.3 15.7 1.1 0.9 0.1 60.0 9.9 

SD: standard deviation. 

Raspberry fruit detection with Yolo5 and raspberry data set 
Compared to manual measurements (e.g., weighing equipment or ruler), non-invasive 

image-based phenotyping of fruit plants aims to develop a comprehensive phenotyping model 
for fruit plants based on computer vision techniques and tools. To reach this goal throughout 
the season from flowering to harvest, computer vision, DL architectures and imaging 
algorithms using quantitative data from massive 2D, and 3D images of raspberry plants were 
considered. In this work, a representative raspberry data set (Raspberry data set) was created 
consisting of 2072 raspberry images before final data cleaning. The images were acquired at 
different times during the raspberry growth phases from different angles and distances. The 
pixels of healthy, symptomatic, or damaged raspberries were classified into five classes: 
“Buds”, “Flowers”, “Unripe Berries”, “Ripe Berries”, and “Damaged Berries”. The images size 
was 1773×1773 pixels. See Figure 5 for the parameters and average proportion of the 
Raspberry data set. 

 

Figure 5. Parameters of the Raspberry data set, (a) the number of instances for each class, 
(b) the average proportions of the height and width of the instances. 

To detect the most important yield components (number of laterals per cane, number 
of flowers/fruits per lateral, and average mass of fruits), an object detector was developed. It 
is based on the Yolo5 DNN architecture and has been trained on a Raspberry data set (Figure 
6) After training our detector, we made for predictions for the new and unseen raspberry 
images in our test set. It can be seen that the detector currently correctly with appropriate 
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probability can detect labelled raspberry classes. However, it struggles to correctly 
differentiate between one or multi-class objects when the visibility of the objects to be 
classified is occluded by the same class or other class object. 

 

Figure 6. Detection results obtained with the trained Yolo5 detector on random images from 
the test set of the Raspberry data set. (a) “Buds”, (b) “Unripe Berries” and “Ripe 
Berries”, (c) “Flowers”, (d) “Flowers”, “Buds”, and “Unripe Berries”. 

To evaluate the convergence performance three different types of loss shown in Figure 
7 were taken into consideration: box loss, objectness loss and classification loss. The box loss 
represents how well the predicted bounding box covers an object and how well the algorithm 
can locate the centre of an object. Classification loss gives an idea how well the algorithm can 
predict the correct class of a given object. Objectness is a measure of the probability that a 
given object exists in a proposed region. 

 

Figure 7. Convergence of Yolo5 object detector during DNN training, where X-axes indicate 
number of epochs, Y-axes indicate parameter value. 

The raspberry object detector improved swiftly in terms of precision, mean average 
precision and recall before plateauing after about 50 epochs. The box, objectness and 
classification losses of the validation data also shown decline around epoch 50. To select the 
best weights for the model an early stopping was used. In using 3D image approach, the most 
important consideration was the localization of the object in point cloud. The next step will 
be to analyse the object parameters, such as length, width, depth, surface smoothness, 
ripeness of raspberries and so on. 

CONCLUSIONS 
The diversity of fruit parameters and yield components of different genotypes is 



108 

important for the development smart non-invasive methods for phenotyping. 
In the first part of the project, the DNN Yolo5 has been developed for the detection and 

localization of raspberries in RGB images. The DL model has been trained to estimate 
raspberry yield, and achieves after calculation of average precision for each raspberry class 
and taking a mean value over all classes, an average accuracy mAP of more than 70%. 3D 
image data processing is also considered to estimate raspberry parameters in 3 dimensions. 
Currently, the 3D model can separate raspberries by their height, width and depth in a 3D 
point cloud. Future research will include and focus on raspberry texture analysis which is 
supposed leading towards intelligent non-invasive phenotyping categorization. 
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