Publications
Most important publications
G.Lācis, K.Kārkliņa, T.Bartulsons, E.Kaufmane. 2024. Intergeneric Transfer of Simple Sequence Repeat Molecular Markers for the Study of Chaenomeles as Fruit Crop Breeding Material. Horticulturae, MDPI. , 10, 1233. https://doi.org/10.3390/horticulturae10111233 (Q1)
Baškirovs, G., Dukurs, K., Soliven, A., Górnaś, P. Evaluation of RPLC stationary phases for tocopherol and tocotrienol positional isomer separation: Method development and profiling. Talanta, 2024, 277, 126360. https://doi.org/10.1016/j.talanta.2024.126360 (Q1) (Demonstration of several RPLC columns able to separate isomers of beta and gamma of tocopherols and tocotrienols in different types of samples).
Górnaś, P., Lazdiņa, D., Mišina, I., Sipeniece, E., Segliņa, D. Cranberry (Vaccinium macrocarpon Aiton) seeds: An exceptional source of tocotrienols. Scientia Horticulturae, 2024, 331, 113107. https://doi.org/10.1016/j.scienta.2024.113107 (Q1) Cranberry seeds are a rich source of tocotrienols; a "green" methodology of tocochormanols extraction via ethanol was developed and used).
Górnaś, P., Symoniuk, E., Soliven, A. Reversed phase HPLC with UHPLC benefits for the determination of tocochromanols in the seeds of edible fruits in the Rosaceae family. Food Chemistry, 2024, 460, 140789. https://doi.org/10.1016/j.foodchem.2024.140789 (Q1)
Juhnevica-Radenkova, K., Krasnova, I., Seglina, D., Kaufmane, E., Gravite, I., Valdovska, A., & Radenkovs, V. (2024). Biochemical Profile and Antioxidant Activity of Dried Fruit Produced from Apricot Cultivars Grown in Latvia. Horticulturae, 10(3), 205. https://doi.org/10.3390/horticulturae10030205 (Q1)
Kodors, S., Sondors, M., Apeinans, I., Zarembo, I., Lacis, G., Rubauskis, E., Karklina, K. (2024). Importance of mosaic augmentation for agricultural image dataset. Agronomy Research. Volume 22, Issue 1, 2024, Pages 168-179. https://doi.org/10.15159/ar.24.012 (Q3)
Feldmane, D., Lazdina, D., Daugavietis, U., Treigute, D. and Daugaviete, M. (2023). Cold tolerance of Latvian local sweet cherries selected for agroforestry system. Acta Hortic. 1372, 199-208, https://doi.org/10.17660/ActaHortic.2023.1372.26 (Q4)
Kaufmane, E., S.Ruisa, K.Karklina. 2023. The effects of pollinizers, pollen and pistil quality, and fruit set of Japanese quince (Chaenomeles japonica) cultivars and perspective hybrids. Acta Horticulturae, 1362, 621 – 627. https://www.actahort.org/books/1362/1362_84.htm
Strautiņa, S., Kalniņa, I., Kaufmane, E., Sudars, K., Namatēvs, I., Nikulins, A., Edelmers, E. Initial results of the development of intelligent noninvasive phenotyping of raspberries using machine learning and 3D imaging. 2023. Acta Horticulturae, 1381, 101 – 108. https://www.actahort.org/members/showpdf?booknrarnr=1381_14
Strautiņa, S., Kalniņa, I., Kaufmane, E., Sudars, K., Namatēvs, I., Nikulins, A., Edelmers, E.2023 RaspberrySet: Dataset of Annotated Raspberry Images for Object Detection Data, 2023, 8(5), 86. https://ieeexplore.ieee.org/document/9942550 (Q2)
E.Kaufmane, E.Edelmers, K.Sudars, I.Namatevs, A.Nikulins, S.Strautina, I.Kalnina, P.Astile. 2023. Three-Dimensional Imaging in Agriculture: Challenges and Advancements in the Phenotyping of Japanese Quinces in Latvia. Horticulturae, MDPI. 9(12), 1347. 1-16. https://www.mdpi.com/2311-7524/9/12/1347 (Q1)
Lāce, B., Kārkliņa, K., & Deņisova, I. (2022). Gymnosporangium sabinae development cycle—Peculiarities and influencing factors. Journal of Phytopathology, 170, 675–682. https://doi.org/10.1111/jph.13131 (Q2)
Zeipina, S., Alsina, I., Lepse, L., (2022). Influence of agroecological factors on biologically active compounds in globe artichoke heads. Agronomy Research, vol. 20, no. 4, pp. 881–892. https://doi.org/10.15159/ar.22.069 (Q2)
Trinchera, A., Migliore, M., Warren Raffa, D., Ommeslag, S., Debode, J., Shanmugam, S., Dane, S., Babry, J., Kivijarvi, P., Kristensen, H. L., Lepse, L., Salo, T., Campanelli, G., & Willekens, K. (2022). Can multi-cropping affect soil microbial stoichiometry and functional diversity, decreasing potential soil-borne pathogens? A study on European organic vegetable cropping systems. Frontiers in Plant Science, 13, 952910. https://doi.org/10.3389/fpls.2022.952910 (Q1)
Zeipiņa, S., Vågen, I. M., & Lepse, L. (2022). Possibility of Vegetable Soybean Cultivation in North Europe. Horticulturae, 8(7), 593. https://doi.org/10.3390/horticulturae8070593 (Q1)
Rubauskis, E., Jansons, V. and Berlands, V. (2022). Efficiency of irrigation and fertigation in a mature apple orchard: a Latvia experience. Acta Hortic. 1335, 507-514, https://doi.org/10.17660/ActaHortic.2022.1335.63 (Q4)
Feldmane, D., Dēķena, D. & Cirša, E. Frost Tolerance of Flower Buds, Self-Pollination and Fruit Quality Traits in Local Sour Cherries of Latvia. Proceedings of the Latvian Academy of Sciences. Section B. Natural, Exact, and Applied Sciences., 2022, Sciendo, vol. 76 no. 4, pp. 469-476. https://doi.org/10.2478/prolas-2022-0072 (Q4)
Rubauskis, E., Bundzena, G. and Borisova, I. (2022). Performance of apple orchard systems in the Nordic climate. Acta Hortic. 1346, 365-374, https://doi.org/10.17660/ActaHortic.2022.1346.46 (Q4)
Rubauskis, E., Berlands, V. and Jansons, V. (2022). Total evapotranspiration of apple trees with drip irrigation in high density orchard. Acta Hortic. 1335, 153-162, https://doi.org/10.17660/ActaHortic.2022.1335.18 (Q4)
Laugale, V., Krasnova, I. & Lepse, L. Characterisation of Latvian Gooseberry Genetic Resources. Proceedings of the Latvian Academy of Sciences. Section B. Natural, Exact, and Applied Sciences., 2022, Sciendo, vol. 76 no. 4, pp. 555-558. https://doi.org/10.2478/prolas-2022-0086 (Q4)
Grāvīte, I. Cold Resistance of Flower Buds of Latvian Plum Cultivars. Proceedings of the Latvian Academy of Sciences. Section B. Natural, Exact, and Applied Sciences., 2022, Sciendo, vol. 76 no. 4, pp. 500-504. https://doi.org/10.2478/prolas-2022-0077 (Q4)
Dekena, Dz., Lepsis, J., Laugale, V. and Feldmane, D. (2022). Preliminary results of sweet cherry rootstock evaluation for cultivar ‘Arthur’. Acta Hortic. 1346, 709-716, https://doi.org/10.17660/ActaHortic.2022.1346.89 (Q4)
Moročko-Bičevska I., Stalažs A., Lācis G., Laugale V., Baļķe I., Zuļģe N., Strautiņa S. 2022. Cecidophyopsis mites and blackcurrant reversion virus on Ribes hosts: Current scientific progress and knowledge gaps. Open Access Annals of Applied Biology 180 (1): 26-43. DOI: https://onlinelibrary.wiley.com/doi/pdf/10.1111/aab.12720 (Q1)
E. Kaufmane, S. Ruisa and K. Karklina. 2022. Results of propagation for three cultivars of Japanese quince (Chaenomeles japonica), Proceedings of the Latvian Academy of Sciences. Section B, Vol.76, Issue 4, pp.477-481. https://sciendo.com/article/10.2478/prolas-2022-0073
E.Kaufmane, K.Sudars, I.Namatēvs, I.Kalniņa, J.Judvaitis, R.Balašs, S.Strautiņa. 2022. QuinceSet - Dataset of Annotated Japanese Quince Images for Object Detection. Data in Breef.Volume 42, June 2022, 108332. https://www.sciencedirect.com/science/article/pii/S2352340922005340?via%3Dihub (Q3)
Ruņǵis, D., Leino, M.W., Lepse, L. et al. (2021). Genetic characterization of European potato onion (Allium cepa var Aggregatum G. Don) collections. Genet Resour Crop Evol 68, 657–665. https://doi.org/10.1007/s10722-020-01014-2 (Q2)
Feldmane, D., Druva-Lūsīte, I., Pole, V. et al. Rhizophagus irregularis MUCL 41,833 Association with Green Cuttings of Prunus sp. Rootstocks. J Plant Growth Regul 40, 533–540 (2021). https://doi.org/10.1007/s00344-020-10116-1 (Q1)
Lepse, L., Vågen, I. M., Zeipina, S., Torp, T., Olle, M., Rosa, E., & Domínguez-Perles, R. (2021). Influence of Baltic Agro-Environmental Conditions on Yield and Quality of Fava Bean Crops in Conventional Systems. Agriculture, 11(11), 1042. https://doi.org/10.3390/agriculture11111042 (Q2)
I.Mišina, E.Sipeniece, A.Grygier, Y.Qian, M.Rudzińska, E.Kaufmane, D.Segliņa, A.Siger, P.Gornas. 2021. Impact of the harvest year of three cultivars of Japanese quince (Chaenomeles japonica) on the oil content and its composition. Scientia Horticulturae. 275.3. https://doi.org/10.1016/j.scienta.2020.109683.(Q2)
Grāvıte, I., Dēkena, D., Kaufmane, E., Ikase, L. 2021. Intensive type plum plantations in Latvia Acta Horticulturae, 1322, pp. 221-227. https://www.actahort.org/books/1322/1322_32.htm (Q4)
D. Segliņa,I., Krasnova,A., Grygier,E., Radziejewska-Kubzdela,M., Rudzińska,P., Górnaś (2021) Unique bioactive molecule composition of sea buckthorn (Hippophae rhamnoides L.) oils obtained from the peel, pulp, and seeds via physical “solvent-free” approaches. The Journal of the American Oil Chemists' Society (JAOCS), 98(10), pp. 1009–1020 https://aocs.onlinelibrary.wiley.com/doi/abs/10.1002/aocs.12524 (Q2)
I.Mišina, E.Sipeniece, M.Rudzińska, A.Grygier, M.Radzimirska-Graczyk, E.Kaufmane, D.Segliņa, G.Lācis, P.Górnaś. 2020. Associations between oil yield and lipophilic compounds in seed oil of three genotypes Japanese quince (Chaenomeles japonica) during fruit development. European Journal of Lipid Science and Technology. 1900386, p.1 – 7. https://onlinelibrary.wiley.com/doi/full/10.1002/ejlt.201900386?af=R (Q2)
I.Mišina,E.Sipeniece,A.Grygier,Y.Qian,M.Rudzińska,E.Kaufmane, Dalija Seglina, Alexander Siger, Pawel Gornas. 2020. Profiling of the lipophilic components of seed oils recovered from twelve Japanese quince (Chaenomeles japonica) genotypes. Natural product research. https://www.tandfonline.com/doi/full/10.1080/14786419.2020.1782407 (Q1)
Kaufmane E., S.Ruisa. 2020. Breeding of new cultivars of the fruit crop Japanese quince (Chaenomeles japonica ) in Latvia. Acta Horticulturae.1281, P.51-57. 10.17660/ActaHortic.2020.1281.9 (Q4)
Vitalijs Radenkovs, Tõnu Püssa, Karina Juhnevica-Radenkova, Jorens Kviesis, Francisco J. Salar, Diego A. Moreno, Inese Drudze. Wild apple (Malus spp.) by-products as a source of phenolic compounds and vitamin C for food applications, Food Bioscience, Volume 38, 2020, 100744, ISSN 2212-4292, https://doi.org/10.1016/j.fbio.2020.100744 (Q1)